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Hyperbolic Functions & applications

Definitions & identities
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Figure 1: cosh & sinh plots. Note how their magnitudes approach each other for large x.
Why? What will be the nature of tanh(x) plot?

The defining equations are:

cosh(x) ≡ exp(x) + exp(−x)

2
, (1)

sinh(x) ≡ exp(x)− exp(−x)

2
, (2)

tanh(x) ≡ sinh(x)

cosh(x)
. (3)
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over the interval −∞ < x <∞.
Using these equations, prove the following identities:

cosh2(x)− sinh2(x) = 1,

cosh(2x) = 2 cosh2(x)− 1,

cosh(2x) = 2 sinh2(x) + 1,

sinh(2x) = 2 sinh(x) cosh(x),

d cosh(x)

dx
= sinh(x),

d sinh(x)

dx
= cosh(x),∫

cosh(x) dx = sinh(x) + C,∫
sinh(x) dx = cosh(x) + C.

The inverse functions are defined as:

x = cosh(y) x = sinh(y)

y = cosh−1(x), x ≥ 1 y = sinh−1(x), −∞ < x <∞

Note the different domains of the two inverse functions. See the graphs (Fig.1) of the
hyperbolic functions for reasons.

Consider the first pair of equations above.

exp(y) = cosh(y) + sinh(y)

= x+

√
cosh2(y)− 1

= x+
√
x2 − 1

ln [exp(y)] = ln
(
x+
√
x2 − 1

)
y = ln

(
x+
√
x2 − 1

)
cosh−1(x) = ln

(
x+
√
x2 − 1

)
, x ≥ 1 (4)

For the second pair, another useful identity results:

exp(y) = cosh(y) + sinh(y)

=

√
sinh2(y) + 1 + x

= x+
√
x2 + 1

ln [exp(y)] = ln
(
x+
√
x2 + 1

)
y = ln

(
x+
√
x2 + 1

)
sinh−1(x) = ln

(
x+
√
x2 + 1

)
, −∞ < x <∞ (5)
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Note that the argument for the logarithm is always ≥ 0, hence no modulus sign is required.
Prove that:

cosh−1(x) = sinh−1(
√
x2 − 1), x ≥ 1 (6)

sinh−1(x) = cosh−1(
√
x2 + 1), −∞ < x <∞ (7)

Compare eqns 6 & 7 with the corresponding relations for the inverse trigonometric func-
tions sin−1 x & cos−1 x.

Evaluation of integrals

Evaluation of
∫

dx√
x2+a2

: For y = x/a, we have∫
dx√
x2 + a2

=

∫
dy√
y2 + 1

=

∫
cosh(z) dz

cosh(z)
, for y = sinh(z)

= z + C = sinh−1(y) + C

or,

∫
dx√
x2 + a2

= sinh−1(x/a) + C = ln
(
x+
√
x2 + a2

)
+ C ′, (8)

where eq.5 has been used (C ′ = C − ln a).
Following the preceding steps, prove that:∫

dx√
x2 − a2

= cosh−1(x/a) + C = ln
(
x+
√
x2 − a2

)
+ C ′ (9)

Prove that:∫ √
1 + a2 x2 dx =

1

2a
sinh−1(ax) +

x

2

√
1 + a2 x2 + C

=
1

2a
ln
(
ax+

√
1 + a2 x2

)
+
x

2

√
1 + a2 x2 + C (10)

Hints: Make the substitutions y =
√

1 + a2 x2 & then z = cosh−1(y). This reduces the
integral to (1/2a)

∫
(cosh(2z)+1)dz. After integration, use the various identites to simplify

& obtain the final expressions.
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The Hyperbola
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Figure 2: Polar plots for the two branches of a hyperbola. l = 1; e = 1.5. The origin is
the first focus S & the red line is the corresponding directrix.

The equation of any conic section in plane-polar coordinates is given by

r =
l

1 + e cosφ
, (11)

where φ = 0 is the position of the periapsis (defined later).
In plane geometry, a conic section is defined as the locus of points whose distances to

a fixed point (the focus) and a fixed line (the directrix) always has the same ratio (the
eccentricity e). If P1 be a point on the conic, then SP1 = e P1M1 (see Fig.2). The
coordinates of P1 is (r, φ), φ = 0 being along SA. The length of a chord parallel to the
directrix & passing through the focus is called the latus rectum 2 l (SL = l in Fig.2). Then
SL = eLM , by definition. From the figure, LM = SP1 cosφ+P1M1 = r cosφ+P1M1.

Hence,

LM =
l

e
= r cosφ+

r

e
, which is Eq.11.

The periapsis & apoapsis are the nearest & farthest points on the conic from the focus.
For e < 1, an ellipse, the periapsis lies between the focus & its directrix. The apoapsis
lies in the side of the focus opposite to the directrix.

The parabola & hyperbola have no apoapsis. However, the hyperbola, for which
e > 1, there is a second branch on the opposite side of the directrix. This branch
also has a periapsis, marked A in Fig.2. For any point P2 on this branch, we must have
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SP2 = e P2M2. Let the coordinates of P2 be (r′, φ′). From the figure, LM + P2M2 =
SP2 cosφ′ = r′ cosφ′. Hence,

LM + P2M2 =
l

e
+
r′

e
= r′ cosφ′

On rearrangement, the equation for the second branch is

r′ =
l

e cosφ′ − 1
, (12)

where (r′, φ′) are the polar coordinates of points on the second branch with the first focus
as the origin. The two periapses distances are therefore,

r1 =
l

e+ 1
r2 =

l

e− 1
(13)

The major axis for a hyperbola = 2a is defined as the distance between the two periapses
(AP in Fig.2). Or,

a =
r2 − r1

2
=

l

e2 − 1
(14)

A second symmetry axis of the hyperbola, called the minor axis, also exists which is
perpendicular to the major axis & lies midway between A and P in Fig.2, or midway
between the second & first foci (see Fig.3). Now, consider any point P on a single
branch of a hyperbola. W.r.t. its first focus S, the equation of the branch is given by
Eq.11, with (r, φ) being the coordinates of P with S as origin & φ = 0 is along SD, φ
increases in the anti-clockwise direction. If the second focus S ′ is taken as the origin, the
coordinates of P are (r′φ′), with φ′ = 0 along S ′D′, φ′ increases in the clockwise direction
. The equation of this branch is therefore given by Eq.12.

From Fig.3, SS ′ = r1 + r2 = 2le/(e2 − 1).
Also, SS ′ = SQ+QS ′ = SP cosφ+ S ′P cosφ′ = r cosφ+ r′ cosφ′. Using Eqns. 11 &

12, we have

2le

e2 − 1
=
l − r
e

+
l + r′

e
=

2l

e
+
r′ − r
e

or, r′ − r =
2le2

e2 − 1
− 2l =

2l

e2 − 1
= 2a, (see Eq.14) (15)

Eq.15 is satisfied by any point on a particular branch of a hyperbola, r being its distance
from the first focus & r′, the distance from the second focus.

Hyperbola in Cartesian coordinates

A hyperbola, with its focus on the X−axis is described by the equation

x2

a2
− y2

b2
= 1, (16)

where a & b are its semi-major & semi-minor axis distances respectively. The slope of the
curve is dy/dx = (x/y)(b2/a2). In the asymptotic region, Eq.16 reduces to

x2

a2
≈ y2

b2
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Figure 3: A point P on a single branch has coordinates (r, φ) & (r′φ′) w.r.t. the two foci
S & S ′ as origins respectively. l = 1; e = 1.5. For each focus, there is a corresponding
directrix.

Hence, the slope of the asymptote (which is equal to the slope of the curve in the asymp-
totic region) is given by

dy

dx
= ±a

b

b2

a2
= ± b

a
(17)

Therefore, the height of a triange with a as its base & the asymptote of slope b/a as
hypotenuse, is simply b (see Fig.4)

Relationship of a, b & e:
The eccentricity of the hyperbola can be obtained by comparing the Cartesian & the

polar form. The branch located at x ≥ a is given in the polar form by Eq.12. The polar
angle of the asymptote is obtained by taking the limit r →∞ or φ′ → cos−1(1/e).

Hence tan−1(b/a) = cos−1(a/
√
a2 + b2) = cos−1(1/e). Therefore we have

e =

√
1 +

b2

a2
b = a

√
e2 − 1 (18)

The foci are located at a distance ±(r1+a) = ±ae from the origin (see Fig.4 & Eq.14).

Rectangular Hyperbola

A hyperbola, with its major & minor axes of equal length, is called a rectangular hyper-
bola. The asymptotes, therefore, make an angle of tan−1(1) = π/4 with the symmetry
axis & are hence mutually perpendicular. When the asymptotes are used as coordinate
axes, the equation of the hyperbola takes a simple form.
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Figure 4: Hyperbola in Cartesian coordinates. a = 2; b = 1. For this choice, e ≈ 1.118

Consider the rectangular hyperbola y2 − x2 = a2, with its foci lying along the Y axis.
To use the asymptotes as axes, an anti-clockwise rotation of angle π/4 about the Z axis is
necessary. Let us call this system the X ′Y ” system. The coordinates of any point (x, y)
transforms to (x′, y′), by the transformation relations:

x = x′ cos θ − y′ sin θ
y = x′ sin θ + y′ cos θ,

with θ = π/4. Substituting in the relation y2 − x2 = a2, we get the equation of a
reactangular hyperbola, with asymptotes as axes, as

x′y′ =
a2

2
. (19)

Note that the eccentricity of such a hyperbola is, by Eq.18,
√

2.
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