Khatra Adibasi Mahavidyalaya: Lecture Notes

Dr. Siddhartha Sinha Vector Identities

Product Rules

For the del vector operator $(\nabla = \hat{x}\frac{\partial}{\partial x} + \hat{y}\frac{\partial}{\partial y} + \hat{z}\frac{\partial}{\partial z})$ acting on the various combinations of the product of two *types* of fields $A(r) \& f(r)$ (vector $\&$ scalar) the following vector identities are given, along with their proofs. The quantities are evaluated in Cartesian coordinates, the coordinate axes are chosen such that the vectors $A(r) \& B(r)$ lie in a plane perpendicular to \hat{z} . Further, a rotation about \hat{z} is performed to make $A(r) || \hat{x}$.

Thus $\mathbf{A}(\mathbf{r}) = A_x(x, y, z)\hat{\mathbf{x}} \& \mathbf{B}(\mathbf{r}) = B_x(x, y, z)\hat{\mathbf{x}} + B_y(x, y, z)\hat{\mathbf{y}}$. This reduces the following quantities to a simplified form:

$$
\nabla \cdot \mathbf{A} = \frac{\partial}{\partial x} A_x \tag{1}
$$

$$
\nabla \times \mathbf{A} = \frac{\partial}{\partial z} A_x \hat{\mathbf{y}} - \frac{\partial}{\partial y} A_x \hat{\mathbf{z}}
$$
(2)

$$
\nabla \cdot \boldsymbol{B} = \frac{\partial}{\partial x} B_x + \frac{\partial}{\partial y} B_y \tag{3}
$$

$$
\nabla \times \boldsymbol{B} = -\frac{\partial}{\partial z} B_y \hat{\boldsymbol{x}} + \frac{\partial}{\partial z} B_x \hat{\boldsymbol{y}} + \left(\frac{\partial}{\partial x} B_y - \frac{\partial}{\partial y} B_x\right) \hat{\boldsymbol{z}}
$$
(4)

$$
A.B = A_x B_x \tag{5}
$$

$$
\mathbf{A} \times \mathbf{B} = A_x B_y \hat{\mathbf{z}} \tag{6}
$$

$$
\mathbf{A}.\mathbf{\nabla} = A_x \frac{\partial}{\partial x} \tag{7}
$$

$$
\boldsymbol{B}.\boldsymbol{\nabla} = B_x \frac{\partial}{\partial x} + B_y \frac{\partial}{\partial y} \tag{8}
$$

Note that $\mathbf{A}.\nabla \& \mathbf{B}.\nabla$ are scalar operators.

There are two ways to form a scalar using product of two types of fields: $f(\mathbf{r}) g(\mathbf{r}) \&$ A.B. The corresponding two *gradient* rules are:

$$
\nabla(fg) = f\nabla g + g\nabla f \tag{9}
$$

$$
\nabla(A.B) = A \times (\nabla \times B) + B \times (\nabla \times A) + (A.\nabla)B + (B.\nabla)A \tag{10}
$$

A vector is also formed in two ways: $f\mathbf{A} \& \mathbf{A} \times \mathbf{B}$. The corresponding two *divergence* rules are:

$$
\nabla.(f\mathbf{A}) = f\mathbf{\nabla}. \mathbf{A} + \mathbf{\nabla}f. \mathbf{A}
$$
\n(11)

$$
\nabla.(A \times B) = B.(\nabla \times A) - A.(\nabla \times B)
$$
\n(12)

Note that in the last equation all quantities are scalar triple products $\&$ hence, the brackets are not essential.

The corresponding two *curl* rules are:

$$
\nabla \times (f\mathbf{A}) = f(\nabla \times \mathbf{A}) + \nabla f \times \mathbf{A}
$$
 (13)

$$
\nabla \times (A \times B) = (B.\nabla)A - (A.\nabla)B + (\nabla.B)A - (\nabla.A)B \tag{14}
$$

In the last equation, only the bracket in the LHS is essential.

Proofs

- 1. Proof of Eq.(9): do it yourself.
- 2. Proof of Eq.(11): $\nabla \cdot (f\mathbf{A}) = \nabla \cdot (f A_x \hat{\boldsymbol{x}}) = \frac{\partial}{\partial x} (f A_x) = f \frac{\partial}{\partial x} A_x + A_x \frac{\partial}{\partial x} f = RHS$ using Eq.(1) & Eq.(5) in the last step, with **B** replaced by ∇f .
- 3. Proof of Eq.(13): Using Eq.(2) with **A** replaced by $f\mathbf{A}$,

$$
LHS = \frac{\partial}{\partial z} (fA_x) \hat{\mathbf{y}} - \frac{\partial}{\partial y} (fA_x) \hat{\mathbf{z}} = f\left(\frac{\partial}{\partial z} A_x \hat{\mathbf{y}} - \frac{\partial}{\partial y} A_x \hat{\mathbf{z}}\right) + A_x \left(\frac{\partial}{\partial z} f \hat{\mathbf{y}} - \frac{\partial}{\partial y} f \hat{\mathbf{z}}\right)
$$
(15)

The sum of the first two terms of RHS of Eq.(15) is $f(\nabla \times \mathbf{A})$, using Eq.(2). Evaluate $\nabla f \times A$ separately to show that it is the sum of the last two terms of Eq.(15). This proves $Eq.(13)$.

4. Proof of Eq.(12):

$$
\nabla \cdot (\mathbf{A} \times \mathbf{B}) = \nabla \cdot (A_x B_y \hat{\mathbf{z}}) = \frac{\partial}{\partial z} (A_x B_y) = B_y \frac{\partial}{\partial z} A_x + A_x \frac{\partial}{\partial z} B_y
$$

From Eq(2) : $\mathbf{B} \cdot (\nabla \times \mathbf{A}) = B_y \frac{\partial}{\partial z} A_x$,
from Eq(4) : $\mathbf{A} \cdot (\nabla \times \mathbf{B}) = -A_x \frac{\partial}{\partial z} B_y$.

This proves $Eq(12)$.

5. Proof of Eq.(14):

$$
\nabla \times (\mathbf{A} \times \mathbf{B}) = (\hat{x} \frac{\partial}{\partial x} + \hat{y} \frac{\partial}{\partial y} + \hat{z} \frac{\partial}{\partial z}) \times (A_x B_y \hat{z}) = \frac{\partial}{\partial x} (A_x B_y)(-\hat{y}) + \frac{\partial}{\partial y} (A_x B_y)(\hat{x})
$$

\n
$$
= -B_y \frac{\partial}{\partial x} A_x \hat{y} - A_x \frac{\partial}{\partial x} B_y \hat{y} + B_y \frac{\partial}{\partial y} A_x \hat{x} + A_x \frac{\partial}{\partial y} B_y \hat{x}
$$

\n
$$
= -B_y \hat{y} (\nabla \cdot \mathbf{A}) - (\mathbf{A} \cdot \nabla) B_y \hat{y} + B_y \frac{\partial}{\partial y} \mathbf{A} + \mathbf{A} (\frac{\partial}{\partial y} B_y) (\text{see Eqns.1} \& 7)
$$

\n
$$
= -(\mathbf{B} - B_x \hat{x}) (\nabla \cdot \mathbf{A}) - (\mathbf{A} \cdot \nabla) (\mathbf{B} - B_x \hat{x}) + (\mathbf{B} \cdot \nabla - B_x \frac{\partial}{\partial x}) \mathbf{A}
$$

\n
$$
+ \mathbf{A} (\nabla \cdot \mathbf{B} - \frac{\partial}{\partial x} B_x) (\text{ see Eqns.3} \& 8)
$$

\n
$$
= \{-\mathbf{B} (\nabla \cdot \mathbf{A}) - (\mathbf{A} \cdot \nabla) \mathbf{B} + (\mathbf{B} \cdot \nabla) \mathbf{A} + \mathbf{A} (\nabla \cdot \mathbf{B}) \}
$$

\n
$$
+ \{B_x \hat{x} (\nabla \cdot \mathbf{A}) + (\mathbf{A} \cdot \nabla) B_x \hat{x} - B_x \frac{\partial}{\partial x} \mathbf{A} - \mathbf{A} \frac{\partial}{\partial x} B_x \}
$$

\n
$$
= \{ (\nabla \cdot \mathbf{B}) \mathbf{A} - (\nabla \cdot \mathbf{A}) \mathbf{B} + (\mathbf{B} \cdot \nabla) \mathbf{A} - (\mathbf{A} \cdot \nabla) \mathbf{B} \}
$$

\n
$$
+ \{B_x \hat{x} (\
$$

In the last step, $\frac{\partial}{\partial x}(\hat{x}) = 0$ has been used to shift \hat{x} to left or right of $\frac{\partial}{\partial x}$. RHS of Eq.(14) is already obtained as $-B_x \hat{\bm{x}} \frac{\partial}{\partial x} A_x = -B_x \hat{\bm{x}} (\nabla \cdot \bm{A}) \&$ $-A_x\frac{\partial}{\partial x}(B_x\hat{x}) = -(\mathbf{A}.\nabla)(B_x\hat{x})$, thus reducing the second group of terms within {} to zero.

6. *Proof* of Eq.(10): The LHS of Eq.(11) is expressed as:

$$
\nabla(A.B) = \nabla(A_x B_x) = A_x \nabla B_x + B_x \nabla A_x, \qquad (16)
$$

using Eq.(5) & Eq.(9). Now, using Eqn(4), show that

$$
\mathbf{A} \times (\mathbf{\nabla} \times \mathbf{B}) = -A_x \left(\frac{\partial}{\partial x} B_y - \frac{\partial}{\partial y} B_x \right) \hat{\mathbf{y}} + \left(A_x \frac{\partial}{\partial z} B_x \right) \hat{\mathbf{z}}
$$

$$
\mathbf{A} \times (\mathbf{\nabla} \times \mathbf{B}) = \left(-A_x \frac{\partial}{\partial x} \right) (B_y \hat{\mathbf{y}}) + A_x \left(\hat{\mathbf{y}} \frac{\partial}{\partial y} B_x \right) + A_x \left(\hat{\mathbf{z}} \frac{\partial}{\partial z} B_x \right)
$$

$$
= \left(-A_x \frac{\partial}{\partial x} \right) (\mathbf{B} - B_x \hat{\mathbf{x}}) + A_x \left(\hat{\mathbf{y}} \frac{\partial}{\partial y} B_x + \hat{\mathbf{z}} \frac{\partial}{\partial z} B_x \right)
$$

$$
= -(\mathbf{A} \cdot \mathbf{\nabla}) \mathbf{B} + A_x \left(\hat{\mathbf{x}} \frac{\partial}{\partial x} B_x \right) + A_x \left(\hat{\mathbf{y}} \frac{\partial}{\partial y} B_x + \hat{\mathbf{z}} \frac{\partial}{\partial z} B_x \right)
$$

$$
= -(\mathbf{A} \cdot \mathbf{\nabla}) \mathbf{B} + A_x \left(\hat{\mathbf{x}} \frac{\partial}{\partial x} + \hat{\mathbf{y}} \frac{\partial}{\partial y} + \hat{\mathbf{z}} \frac{\partial}{\partial z} \right) B_x
$$

$$
= -(\mathbf{A} \cdot \mathbf{\nabla}) \mathbf{B} + A_x \mathbf{\nabla} B_x
$$

Similarly, use $\text{Eqn}(2)$ to show that

$$
\boldsymbol{B} \times (\boldsymbol{\nabla} \times \boldsymbol{A}) = \left(-B_y \frac{\partial}{\partial y} A_x \right) \hat{\boldsymbol{x}} + \left(B_x \frac{\partial}{\partial y} A_x \right) \hat{\boldsymbol{y}} + \left(B_x \frac{\partial}{\partial z} A_x \right) \hat{\boldsymbol{z}}
$$

3 Dr. Siddhartha Sinha

$$
\begin{aligned}\n\therefore \mathbf{B} \times (\mathbf{\nabla} \times \mathbf{A}) &= \left(-B_y \frac{\partial}{\partial y} \right) (A_x \hat{\mathbf{x}}) + B_x \left(\hat{\mathbf{y}} \frac{\partial}{\partial y} \right) A_x + B_x \left(\hat{\mathbf{z}} \frac{\partial}{\partial z} \right) A_x \\
&= \left(-\mathbf{B} \cdot \nabla + B_x \frac{\partial}{\partial x} \right) (A_x \hat{\mathbf{x}}) + B_x \left(\hat{\mathbf{y}} \frac{\partial}{\partial y} + \hat{\mathbf{z}} \frac{\partial}{\partial z} \right) A_x \\
&= -(\mathbf{B} \cdot \nabla) \mathbf{A} + B_x \left(\hat{\mathbf{x}} \frac{\partial}{\partial x} \right) A_x + B_x \left(\hat{\mathbf{y}} \frac{\partial}{\partial y} + \hat{\mathbf{z}} \frac{\partial}{\partial z} \right) A_x \\
&= -(\mathbf{B} \cdot \nabla) \mathbf{A} + B_x \left(\hat{\mathbf{x}} \frac{\partial}{\partial x} + \hat{\mathbf{y}} \frac{\partial}{\partial y} + \hat{\mathbf{z}} \frac{\partial}{\partial z} \right) A_x \\
&= -(\mathbf{B} \cdot \nabla) \mathbf{A} + B_x \nabla A_x\n\end{aligned}
$$

[N.B. from the expressions for $\mathbf{A} \times (\nabla \times \mathbf{B})$, the expression for $\mathbf{B} \times (\nabla \times \mathbf{A})$ cannot be obtained by simply interchanging $\vec{A} \& \vec{B}$. The fact that the expressions are obtained from each other by interchange of symbols A & B is a peculiarity of the particular orientation choice of our coordinate system.]

Now, add the two expressions to get

$$
\boldsymbol{A} \times (\boldsymbol{\nabla} \times \boldsymbol{B}) + \boldsymbol{B} \times (\boldsymbol{\nabla} \times \boldsymbol{A}) = -(\boldsymbol{A}.\boldsymbol{\nabla})\boldsymbol{B} + A_x \boldsymbol{\nabla} B_x - (\boldsymbol{B}.\boldsymbol{\nabla})\boldsymbol{A} + B_x \boldsymbol{\nabla} A_x
$$

Rearranging terms $\&$ using Eq.(16), we have

$$
\boldsymbol{A}\times(\boldsymbol{\nabla}\times\boldsymbol{B})+\boldsymbol{B}\times(\boldsymbol{\nabla}\times\boldsymbol{A})+(\boldsymbol{A}.\boldsymbol{\nabla})\boldsymbol{B}+(\boldsymbol{B}.\boldsymbol{\nabla})\boldsymbol{A}=\boldsymbol{\nabla}(A_xB_x)=\boldsymbol{\nabla}(\boldsymbol{A}.\boldsymbol{B})
$$

Second Derivatives

The operator ∇ acting on the scalar field $\nabla A \&$ the two vector fields $\nabla f \& \nabla \times A$ gives rise to five identities:

- 1. ∇ .(∇f) = $\nabla^2 f$, the Laplacian of f, which is a scalar field. This is the defining equation for the Laplacian.
- 2. $\nabla \times (\nabla f) = 0$. This is easily proved, assuming equality of mixed second derivative operators like $\frac{\partial}{\partial x}$ $\frac{\partial}{\partial y}=\frac{\partial}{\partial y}$ ∂y $rac{\partial}{\partial x}$.
- 3. $\nabla(\nabla \cdot \mathbf{A})$. This term appears in Eq.(17).
- 4. ∇ .($\nabla \times \mathbf{A}$) = 0. Again, the proof is similar to item 2.

$$
5. \,
$$

$$
\nabla \times (\nabla \times \mathbf{A}) = \nabla (\nabla . \mathbf{A}) - \nabla^2 \mathbf{A}
$$
 (17)

This is also the defining equation for the Laplacian of a vector field. Proof:

$$
\nabla \times (\nabla \times \mathbf{A}) = \nabla \times \left(\frac{\partial}{\partial z} A_x \hat{\mathbf{y}} - \frac{\partial}{\partial y} A_x \hat{\mathbf{z}} \right) = \hat{\mathbf{x}} \left(-\frac{\partial^2}{\partial y^2} A_x - \frac{\partial^2}{\partial z^2} A_x \right)
$$

+ $\hat{\mathbf{y}} \frac{\partial}{\partial x} \frac{\partial}{\partial y} A_x + \hat{\mathbf{z}} \frac{\partial}{\partial x} \frac{\partial}{\partial z} A_x \text{ (from Eq.(2))}$
= $\hat{\mathbf{x}} \left(-\frac{\partial^2}{\partial x^2} A_x - \frac{\partial^2}{\partial y^2} A_x - \frac{\partial^2}{\partial z^2} A_x \right) +$
 $\hat{\mathbf{x}} \frac{\partial^2}{\partial x^2} A_x + \hat{\mathbf{y}} \frac{\partial}{\partial y} \frac{\partial}{\partial x} A_x + \hat{\mathbf{z}} \frac{\partial}{\partial z} \frac{\partial}{\partial x} A_x$
= $-\nabla^2 (A_x \hat{\mathbf{x}}) + \nabla (\nabla . \mathbf{A}) = \nabla (\nabla . \mathbf{A}) - \nabla^2 \mathbf{A}$

Note that $\nabla \times \nabla$ is a null operator.

Integral Theorems

We use $d\boldsymbol{r}$ to denote an infinitesial displacement in line integrals, $d\sigma \& d\tau$ as infinitesimal surface & volume elements respectively, all located at r . \hat{n} will denote the unit normal at the location of $d\sigma$. The gradient, divergence & Stokes's theorem are respectively:

$$
\int_{\mathbf{r}_a}^{\mathbf{r}_b} \mathbf{\nabla} f(\mathbf{r}).d\mathbf{r} = f(\mathbf{r}_b) - f(\mathbf{r}_a)
$$
\n(18)

$$
\int_{\tau} \mathbf{\nabla}. \mathbf{A}(\mathbf{r}) d\tau = \oint_{\sigma} \mathbf{A}(\mathbf{r}). \hat{\mathbf{n}} d\sigma
$$
\n(19)

$$
\int_{\sigma} \mathbf{\nabla} \times \mathbf{A}(\mathbf{r}). \hat{\mathbf{n}} \, d\,\sigma = \oint_{\gamma} \mathbf{A}(\mathbf{r}). d\,\mathbf{r} \tag{20}
$$

5 Dr. Siddhartha Sinha

The LHS of the gradient theorem is an integral along an open curve whose boundaries are the two points $r_a \& r_b$. For a fixed pair of end-points, the integral is independent of the choice of the curve joning them.

The LHS of the divergence theorem is an integral over a volume τ whose boundary is the *closed* surface σ . For a closed surface, \hat{n} is always directed away from the volume.

The LHS of Stoke's theorem is an integral over an *open* surface σ whose boundary is the *closed* curve γ . The direction in which the line integral is performed is given by the right-hand-rule, if the thumb points along \hat{n} . Conversely, the orientation of σ , *i.e.*, the direction of $\hat{\boldsymbol{n}}$ is given by the right-hand-rule, if the four fingers curl in the direction of traversal of γ . For a fixed boundary γ , the surface integral is independent of the choice of the surface enclosed by γ .

All three theorems are higher dimensional forms of the fundamental theorem of calculus:

$$
\int_{a}^{b} \frac{dF(x)}{dx} dx = F(b) - F(a), \qquad (21)
$$

i.e., the integral of a derivative of a function over a region is given by its values at the region's boundaries.

Corollaries

$$
\int_{\tau} \mathbf{\nabla} f \, d\,\tau = \oint_{\sigma} f \, \hat{\mathbf{n}} \, d\,\sigma \tag{22}
$$

$$
\int_{\tau} (\mathbf{\nabla} \times \mathbf{A}) \, d\tau = \oint_{\sigma} (\hat{\mathbf{n}} \times \mathbf{A}) \, d\sigma \tag{23}
$$

$$
\int_{\sigma} (\hat{\mathbf{n}} \times \nabla f) \, d\,\sigma = \oint_{\gamma} f \, d\,\mathbf{r} \tag{24}
$$

$$
\int_{\sigma} [(\hat{\mathbf{n}} \times \nabla) \times \mathbf{A}] d\sigma = \oint_{\gamma} d\mathbf{r} \times \mathbf{A}
$$
\n(25)

1. Proof of Eq(22): Take $\mathbf{A} = f \mathbf{B}$, with \mathbf{B} a constant vector, in the divergence theorem. The product rule in Eq.(11) gives $\nabla \cdot \mathbf{A} = \nabla f \cdot \mathbf{B}$. Hence

$$
\left(\int_{\tau} \mathbf{\nabla} f \, d\,\tau\right) . \mathbf{B} = \left(\oint_{\sigma} f \, \hat{\mathbf{n}} \, d\,\sigma\right) . \mathbf{B},
$$

for any *arbitrary* constant vector **B**. Choosing $\mathbf{B} = \hat{\boldsymbol{x}}$ proves the equality of the x components of the two sides of Eq.(22). Proceeding similarly for other components, the relation is proved.

For $f(r) = constant$, the LHS vanishes & we get that the *total vector area for a* closed surface is zero:

$$
\oint_{\sigma} \hat{\mathbf{n}} \, d\,\sigma = 0 \tag{26}
$$

2. Proof of Eq(23): Take $\mathbf{C} = \mathbf{A} \times \mathbf{B}$, with \mathbf{B} a constant vector, in the divergence theorem. The product rule in Eq.(12) gives ∇ . $\mathbf{C} = \mathbf{B}$. $(\nabla \times \mathbf{A})$. Hence

$$
\left(\int_{\tau} \mathbf{\nabla} \times \mathbf{A} \, d\,\tau\right) . \mathbf{B} = \oint_{\sigma} (\mathbf{A} \times \mathbf{B}) \cdot \hat{\mathbf{n}} \, d\,\sigma, = \left(\oint_{\sigma} \hat{\mathbf{n}} \times \mathbf{A} \, d\,\sigma\right) . \mathbf{B},
$$

6 Dr. Siddhartha Sinha

where in the last step, the vectors are cyclically rearranged in the scalar triple product. Again, this is true for any *arbitrary* constant vector B , which proves Eq.(23). Taking $\mathbf{A} = constant$ yields Eq.(26) again.

3. Proof of Eq(24): Take $\mathbf{A} = f \mathbf{B}$, with \mathbf{B} a constant vector, in Stoke's theorem. The product rule in Eq.(13) gives $\nabla \times A = \nabla f \times B$. Hence

$$
\int_{\sigma} (\mathbf{\nabla} f \times \mathbf{B}) \cdot \hat{\mathbf{n}} d\sigma = \oint_{\gamma} f \, \mathbf{B} \cdot d\mathbf{r},
$$
\nor,\n
$$
\left(\int_{\sigma} (\hat{\mathbf{n}} \times \mathbf{\nabla} f) d\sigma \right) \cdot \mathbf{B} = \left(\oint_{\gamma} f d\mathbf{r} \right) \cdot \mathbf{B},
$$

where a cyclic rearrangement of the scalar triple product has been made in the RHS. This proves Eq.(24).

For $f(r) = constant$, the LHS vanishes & we get that the total vector displacement for a closed curve is zero:

$$
\oint_{\gamma} d\mathbf{r} = 0 \tag{27}
$$

4. Proof of Eq(25)(optional): Take $C = A \times B$, with B a constant vector, in Stoke's theorem. The product rule in Eq.(14) gives $\nabla \times C = (B.\nabla)A - (\nabla \cdot A)B$. Hence

$$
\int_{\sigma} \hat{n} \cdot [\nabla \times (\mathbf{A} \times \mathbf{B})] d\sigma = \oint_{\gamma} (\mathbf{A} \times \mathbf{B}) dr
$$

or
$$
\int_{\sigma} \hat{n} \cdot [(\mathbf{B} \cdot \nabla) \mathbf{A} - (\nabla \cdot \mathbf{A}) \mathbf{B}] d\sigma = \oint_{\gamma} (d\mathbf{r} \times \mathbf{A}) \mathbf{B}
$$
(28)

Now, if $\hat{\boldsymbol{n}} = (n_x, n_y, n_z)$, then the vector operator $\hat{\boldsymbol{n}} \times \nabla$ is given by

$$
\hat{\boldsymbol{n}} \times \boldsymbol{\nabla} = \hat{\boldsymbol{x}} \left(n_y \frac{\partial}{\partial z} - n_z \frac{\partial}{\partial y} \right) + \hat{\boldsymbol{y}} \left(n_z \frac{\partial}{\partial x} - n_x \frac{\partial}{\partial z} \right) + \hat{\boldsymbol{z}} \left(n_x \frac{\partial}{\partial y} - n_y \frac{\partial}{\partial x} \right)
$$

Now, for the coordinate system oriented such that $\mathbf{A} = A_x \hat{\boldsymbol{x}}$, we have

$$
(\hat{\boldsymbol{n}} \times \nabla) \times \boldsymbol{A} = (-\hat{z}) \left(n_z \frac{\partial}{\partial x} A_x - n_x \frac{\partial}{\partial z} A_x \right) + (\hat{\boldsymbol{y}}) \left(n_x \frac{\partial}{\partial y} A_x - n_y \frac{\partial}{\partial x} A_x \right)
$$

\n
$$
= \left[n_x \left(\hat{z} \frac{\partial}{\partial z} \right) A_x + n_x \left(\hat{y} \frac{\partial}{\partial y} \right) A_x \right] - (n_y \hat{\boldsymbol{y}} + n_z \hat{z}) \left(\frac{\partial}{\partial x} A_x \right)
$$

\n
$$
= \left[n_x \left(\hat{x} \frac{\partial}{\partial x} \right) A_x + n_x \left(\hat{y} \frac{\partial}{\partial y} \right) A_x + n_x \left(\hat{z} \frac{\partial}{\partial z} \right) A_x \right]
$$

\n
$$
- (n_x \hat{\boldsymbol{x}} + n_y \hat{\boldsymbol{y}} + n_z \hat{z}) \left(\frac{\partial}{\partial x} A_x \right) \left[\text{add } \& \text{ subtract } n_x \hat{\boldsymbol{x}} \frac{\partial}{\partial x} A_x \right]
$$

\n
$$
= n_x \left(\nabla \right) A_x - (\nabla \cdot \mathbf{A}) \hat{\boldsymbol{n}} \left[\text{see Eq(1)} \right]
$$

\n
$$
\therefore \left[(\hat{\boldsymbol{n}} \times \nabla) \times \mathbf{A} \right] . \mathbf{B} = \mathbf{B} . [n_x \left(\nabla \right) A_x - (\nabla \cdot \mathbf{A}) \hat{\boldsymbol{n}} \right]
$$

\n
$$
= n_x \left(\mathbf{B} . \nabla \right) A_x - (\nabla \cdot \mathbf{A}) \left(\mathbf{B} . \hat{\boldsymbol{n}} \right)
$$

\n
$$
= [\hat{\boldsymbol{n}} . \hat{\boldsymbol{x}}] \left(\mathbf{B} . \nabla \right) A_x - (\nabla \cdot \mathbf{A}) \left(\mathbf{B} . \hat{\boldsymbol{n}} \right)
$$

\n
$$
= \hat{\boldsymbol{n}} . (\mathbf{B} . \nabla) A_x \hat{\boldsymbol{x}} - (\nabla \cdot \mathbf{A}) \left(\mathbf{B}
$$

This completes the proof. For $\mathbf{A} = constant$ we get Eq(27) again.

Apart from these identities, two further identities, called Green's Identities involving two scalar fields $f(r) \& g(r)$ are also important. Green's first identity is easily obtained by applying the divergence theorem for the vector field $f\nabla g$ & applying the product rule Eq.11:

$$
\int_{\tau} \left(f \, \mathbf{\nabla}^2 g + \mathbf{\nabla} f . \mathbf{\nabla} g \right) d\,\tau = \oint_{\sigma} f \, \mathbf{\nabla} g . \hat{\mathbf{n}} \, d\,\sigma \tag{29}
$$

The second identity is derived from the 3-d version of the following identity:

$$
\frac{d}{dx}\left[f(x)\frac{d}{dx}g(x) - g(x)\frac{d}{dx}f(x)\right] = f(x)\frac{d^2}{dx^2}g(x) - g(x)\frac{d^2}{dx^2}f(x),
$$

which is

$$
\nabla \cdot [f \, \nabla g - g \, \nabla f] = f \, \nabla^2 g - g \, \nabla^2 f \tag{30}
$$

Applying the divergence theorem yields Green's second identity:

$$
\int_{\tau} \left(f \, \mathbf{\nabla}^2 g - g \, \mathbf{\nabla}^2 f \right) d\tau = \oint_{\sigma} \left[f \, \mathbf{\nabla} g - g \, \mathbf{\nabla} f \right] . \hat{\mathbf{n}} \, d\sigma \tag{31}
$$