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Vector Identities

Product Rules

For the del vector operator (∇ = x̂ ∂
∂ x

+ ŷ ∂
∂ y

+ ẑ ∂
∂ z

) acting on the various combinations

of the product of two types of fields A(r) & f(r) (vector & scalar) the following vector
identities are given, along with their proofs. The quantities are evaluated in Cartesian
coordinates, the coordinate axes are chosen such that the vectors A(r) & B(r) lie in a
plane perpendicular to ẑ. Further, a rotation about ẑ is performed to make A(r) || x̂.

Thus A(r) = Ax(x, y, z)x̂ & B(r) = Bx(x, y, z)x̂ + By(x, y, z)ŷ. This reduces the
following quantities to a simplified form:

∇.A =
∂

∂ x
Ax (1)

∇×A =
∂

∂ z
Axŷ −

∂

∂ y
Axẑ (2)

∇.B =
∂

∂ x
Bx +

∂

∂ y
By (3)

∇×B = − ∂

∂ z
Byx̂ +

∂

∂ z
Bxŷ +

(
∂

∂ x
By −

∂

∂ y
Bx

)
ẑ (4)

A.B = AxBx (5)

A×B = AxByẑ (6)

A.∇ = Ax
∂

∂ x
(7)

B.∇ = Bx
∂

∂ x
+By

∂

∂ y
(8)

Note that A.∇ & B.∇ are scalar operators.
There are two ways to form a scalar using product of two types of fields: f(r) g(r) &

A.B. The corresponding two gradient rules are:

∇(fg) = f∇g + g∇f (9)

∇(A.B) = A× (∇×B) + B × (∇×A) + (A.∇)B + (B.∇)A (10)

A vector is also formed in two ways: fA & A×B. The corresponding two divergence
rules are:

∇.(fA) = f∇.A + ∇f.A (11)
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∇.(A×B) = B.(∇×A)−A.(∇×B) (12)

Note that in the last equation all quantities are scalar triple products & hence, the brackets
are not essential.

The corresponding two curl rules are:

∇× (fA) = f (∇×A) + ∇f ×A (13)

∇× (A×B) = (B.∇)A− (A.∇)B + (∇.B)A− (∇.A)B (14)

In the last equation, only the bracket in the LHS is essential.

Proofs

1. Proof of Eq.(9): do it yourself.

2. Proof of Eq.(11): ∇.(fA) = ∇.(fAxx̂) = ∂
∂ x

(fAx) = f ∂
∂ x
Ax + Ax

∂
∂ x
f = RHS,

using Eq.(1) & Eq.(5) in the last step, with B replaced by ∇f .

3. Proof of Eq.(13): Using Eq.(2) with A replaced by fA,

LHS =
∂

∂ z
(fAx)ŷ−

∂

∂ y
(fAx)ẑ = f

(
∂

∂ z
Axŷ −

∂

∂ y
Axẑ

)
+Ax

(
∂

∂ z
f ŷ − ∂

∂ y
f ẑ

)
(15)

The sum of the first two terms of RHS of Eq.(15) is f(∇×A), using Eq.(2). Evaluate
∇f ×A separately to show that it is the sum of the last two terms of Eq.(15). This
proves Eq.(13).

4. Proof of Eq.(12):

∇.(A×B) = ∇.(AxByẑ) =
∂

∂ z
(AxBy) = By

∂

∂ z
Ax + Ax

∂

∂ z
By

From Eq(2) : B.(∇×A) = By
∂

∂ z
Ax,

from Eq(4) : A.(∇×B) = −Ax
∂

∂ z
By.

This proves Eq(12).
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5. Proof of Eq.(14):

∇× (A×B) = (x̂
∂

∂ x
+ ŷ

∂

∂ y
+ ẑ

∂

∂ z
)× (AxByẑ) =

∂

∂ x
(AxBy)(−ŷ) +

∂

∂ y
(AxBy)(x̂)

= −By
∂

∂ x
Axŷ − Ax

∂

∂ x
Byŷ +By

∂

∂ y
Axx̂ + Ax

∂

∂ y
Byx̂

= −Byŷ(∇.A)− (A.∇)Byŷ +By
∂

∂ y
A + A(

∂

∂ y
By)( see Eqns.1 & 7)

= −(B −Bxx̂)(∇.A)− (A.∇)(B −Bxx̂) + (B.∇−Bx
∂

∂ x
)A

+ A(∇.B − ∂

∂ x
Bx)( see Eqns.3 & 8)

= {−B(∇.A)− (A.∇)B + (B.∇)A + A(∇.B)}

+

{
Bxx̂(∇.A) + (A.∇)Bxx̂−Bx

∂

∂ x
A−A

∂

∂ x
Bx

}
= {(∇.B)A− (∇.A)B + (B.∇)A− (A.∇)B}

+

{
Bxx̂(∇.A) + (A.∇)Bxx̂−Bxx̂

∂

∂ x
Ax − Ax

∂

∂ x
(Bxx̂)

}
In the last step, ∂

∂ x
(x̂) = 0 has been used to shift x̂ to left or right of ∂

∂ x
.

RHS of Eq.(14) is already obtained as −Bxx̂
∂
∂ x
Ax = −Bxx̂(∇.A) &

−Ax ∂
∂ x

(Bxx̂) = −(A.∇)(Bxx̂), thus reducing the second group of terms within {}
to zero.

6. Proof of Eq.(10): The LHS of Eq.(11) is expressed as:

∇(A.B) = ∇(AxBx) = Ax∇Bx +Bx∇Ax, (16)

using Eq.(5) & Eq.(9). Now, using Eqn(4), show that

A× (∇×B) = −Ax
(
∂

∂ x
By −

∂

∂ y
Bx

)
ŷ +

(
Ax

∂

∂ z
Bx

)
ẑ

A× (∇×B) =

(
−Ax

∂

∂ x

)
(Byŷ) + Ax

(
ŷ
∂

∂ y
Bx

)
+ Ax

(
ẑ
∂

∂ z
Bx

)
=

(
−Ax

∂

∂ x

)
(B −Bxx̂) + Ax

(
ŷ
∂

∂ y
Bx + ẑ

∂

∂ z
Bx

)
= −(A.∇)B + Ax

(
x̂
∂

∂ x
Bx

)
+ Ax

(
ŷ
∂

∂ y
Bx + ẑ

∂

∂ z
Bx

)
= −(A.∇)B + Ax

(
x̂
∂

∂ x
+ ŷ

∂

∂ y
+ ẑ

∂

∂ z

)
Bx

= −(A.∇)B + Ax∇Bx

Similarly, use Eqn(2) to show that

B × (∇×A) =

(
−By

∂

∂ y
Ax

)
x̂ +

(
Bx

∂

∂ y
Ax

)
ŷ +

(
Bx

∂

∂ z
Ax

)
ẑ

3 Dr. Siddhartha Sinha



Vector Identities

∴ B × (∇×A) =

(
−By

∂

∂ y

)
(Axx̂) +Bx

(
ŷ
∂

∂ y

)
Ax +Bx

(
ẑ
∂

∂ z

)
Ax

=

(
−B.∇ +Bx

∂

∂ x

)
(Axx̂) +Bx

(
ŷ
∂

∂ y
+ ẑ

∂

∂ z

)
Ax

= −(B.∇)A +Bx

(
x̂
∂

∂ x

)
Ax +Bx

(
ŷ
∂

∂ y
+ ẑ

∂

∂ z

)
Ax

= −(B.∇)A +Bx

(
x̂
∂

∂ x
+ ŷ

∂

∂ y
+ ẑ

∂

∂ z

)
Ax

= −(B.∇)A +Bx∇Ax

[N.B. from the expressions for A× (∇×B), the expression for B× (∇×A) cannot
be obtained by simply interchanging A & B. The fact that the expressions are
obtained from each other by interchange of symbols A & B is a peculiarity of the
particular orientation choice of our coordinate system.]

Now, add the two expressions to get

A× (∇×B) + B × (∇×A) = −(A.∇)B + Ax∇Bx − (B.∇)A +Bx∇Ax

Rearranging terms & using Eq.(16), we have

A× (∇×B) + B × (∇×A) + (A.∇)B + (B.∇)A = ∇(AxBx) = ∇(A.B)
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Second Derivatives

The operator ∇ acting on the scalar field ∇.A & the two vector fields ∇f & ∇ × A
gives rise to five identities:

1. ∇.(∇f) = ∇2f, the Laplacian of f , which is a scalar field. This is the defining
equation for the Laplacian.

2. ∇× (∇f) = 0. This is easily proved, assuming equality of mixed second derivative
operators like ∂

∂ x
∂
∂ y

= ∂
∂ y

∂
∂ x

.

3. ∇(∇.A). This term appears in Eq.(17).

4. ∇.(∇×A) = 0. Again, the proof is similar to item 2.

5.
∇× (∇×A) = ∇(∇.A)−∇2A (17)

This is also the defining equation for the Laplacian of a vector field.

Proof:

∇× (∇×A) = ∇×
(
∂

∂ z
Axŷ −

∂

∂ y
Axẑ

)
= x̂

(
− ∂2

∂ y2
Ax −

∂2

∂ z2
Ax

)
+ ŷ

∂

∂ x

∂

∂ y
Ax + ẑ

∂

∂ x

∂

∂ z
Ax(from Eq.(2))

= x̂

(
− ∂2

∂ x2
Ax −

∂2

∂ y2
Ax −

∂2

∂ z2
Ax

)
+

x̂
∂2

∂ x2
Ax + ŷ

∂

∂ y

∂

∂ x
Ax + ẑ

∂

∂ z

∂

∂ x
Ax

= −∇2 (Axx̂) + ∇ (∇.A) = ∇(∇.A)−∇2A

Note that ∇×∇ is a null operator.

Integral Theorems

We use d r to denote an infinitesial displacement in line integrals, d σ & d τ as infinitesimal
surface & volume elements respectively, all located at r. n̂ will denote the unit normal
at the location of d σ. The gradient, divergence & Stokes’s theorem are respectively:∫ rb

ra

∇f(r).d r = f(rb)− f(ra) (18)∫
τ

∇.A(r) d τ =

∮
σ

A(r).n̂ d σ (19)∫
σ

∇×A(r).n̂ d σ =

∮
γ

A(r).d r (20)
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The LHS of the gradient theorem is an integral along an open curve whose boundaries
are the two points ra & rb. For a fixed pair of end-points, the integral is independent of
the choice of the curve joning them.

The LHS of the divergence theorem is an integral over a volume τ whose boundary is
the closed surface σ. For a closed surface, n̂ is always directed away from the volume.

The LHS of Stoke’s theorem is an integral over an open surface σ whose boundary is
the closed curve γ. The direction in which the line integral is performed is given by the
right-hand-rule, if the thumb points along n̂. Conversely, the orientation of σ, i.e., the
direction of n̂ is given by the right-hand-rule, if the four fingers curl in the direction of
traversal of γ. For a fixed boundary γ, the surface integral is independent of the choice
of the surface enclosed by γ.

All three theorems are higher dimensional forms of the fundamental theorem of cal-
culus: ∫ b

a

dF (x)

d x
d x = F (b)− F (a), (21)

i.e., the integral of a derivative of a function over a region is given by its values at the
region’s boundaries.

Corollaries∫
τ

∇f d τ =

∮
σ

f n̂ d σ (22)∫
τ

(∇×A) d τ =

∮
σ

(n̂×A) d σ (23)∫
σ

(n̂ ×∇f).d σ =

∮
γ

f d r (24)∫
σ

[(n̂ ×∇)×A] d σ =

∮
γ

d r ×A (25)

1. Proof of Eq(22): Take A = f B, with B a constant vector, in the divergence
theorem. The product rule in Eq.(11) gives ∇.A = ∇f.B. Hence(∫

τ

∇f d τ

)
.B =

(∮
σ

f n̂ d σ

)
.B,

for any arbitrary constant vector B. Choosing B = x̂ proves the equality of the x
components of the two sides of Eq.(22). Proceeding similarly for other components,
the relation is proved.

For f(r) = constant, the LHS vanishes & we get that the total vector area for a
closed surface is zero: ∮

σ

n̂ d σ = 0 (26)

2. Proof of Eq(23): Take C = A × B, with B a constant vector, in the divergence
theorem. The product rule in Eq.(12) gives ∇.C = B.(∇×A). Hence(∫

τ

∇×A d τ

)
.B =

∮
σ

(A×B) .n̂ d σ,=

(∮
σ

n̂×A d σ

)
.B,
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where in the last step, the vectors are cyclically rearranged in the scalar triple
product. Again, this is true for any arbitrary constant vector B, which proves
Eq.(23). Taking A = constant yields Eq.(26) again.

3. Proof of Eq(24): Take A = f B, with B a constant vector, in Stoke’s theorem. The
product rule in Eq.(13) gives ∇×A = ∇f ×B. Hence∫

σ

(∇f ×B).n̂ d σ =

∮
γ

f B.d r,

or,

(∫
σ

(n̂×∇f) d σ

)
.B =

(∮
γ

f d r

)
.B,

where a cyclic rearrangement of the scalar triple product has been made in the RHS.
This proves Eq.(24).

For f(r) = constant, the LHS vanishes & we get that the total vector displacement
for a closed curve is zero: ∮

γ

d r = 0 (27)

4. Proof of Eq(25)(optional): Take C = A×B, with B a constant vector, in Stoke’s
theorem. The product rule in Eq.(14) gives ∇×C = (B.∇)A− (∇.A)B. Hence∫

σ

n̂. [∇× (A×B)] d σ =

∮
γ

(A×B).d r

or

∫
σ

n̂. [(B.∇)A− (∇.A)B] d σ =

∮
γ

(d r ×A).B (28)

Now, if n̂ = (nx, ny, nz), then the vector operator n̂×∇ is given by

n̂×∇ = x̂

(
ny

∂

∂ z
− nz

∂

∂ y

)
+ ŷ

(
nz

∂

∂ x
− nx

∂

∂ z

)
+ ẑ

(
nx

∂

∂ y
− ny

∂

∂ x

)
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Now, for the coordinate system oriented such that A = Axx̂, we have

(n̂×∇)×A = (−ẑ)

(
nz

∂

∂ x
Ax − nx

∂

∂ z
Ax

)
+ (ŷ)

(
nx

∂

∂ y
Ax − ny

∂

∂ x
Ax

)
=

[
nx

(
ẑ
∂

∂ z

)
Ax + nx

(
ŷ
∂

∂ y

)
Ax

]
− (nyŷ + nzẑ) (

∂

∂ x
Ax)

=

[
nx

(
x̂
∂

∂ x

)
Ax + nx

(
ŷ
∂

∂ y

)
Ax + nx

(
ẑ
∂

∂ z

)
Ax

]
− (nxx̂ + nyŷ + nzẑ) (

∂

∂ x
Ax)[ add & subtract nxx̂

∂

∂ x
Ax]

= nx (∇)Ax − (∇.A) n̂ [ see Eq(1)]

∴ [(n̂×∇)×A] .B = B. [nx (∇)Ax − (∇.A) n̂]

= nx (B.∇)Ax − (∇.A) (B.n̂)

= [n̂.x̂] (B.∇)Ax − (∇.A) (B.n̂)

= n̂. (B.∇)Axx̂− (∇.A) (B.n̂)

= n̂.[(B.∇)A]− (∇.A) (B.n̂)

or [(n̂×∇)×A] .B = n̂. [(B.∇)A− (∇.A)B] [insert this in Eq.(28)]

This completes the proof. For A = constant we get Eq(27) again.
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Apart from these identities, two further identities, called Green’s Identities involving
two scalar fields f(r) & g(r) are also important. Green’s first identity is easily obtained
by applyng the divergence theorem for the vector field f∇g & applying the product rule
Eq.11: ∫

τ

(
f∇2g + ∇f.∇g

)
d τ =

∮
σ

f∇g.n̂ d σ (29)

The second identity is derived from the 3-d version of the following identity:

d

d x

[
f(x)

d

d x
g(x)− g(x)

d

d x
f(x)

]
= f(x)

d2

d x2
g(x)− g(x)

d2

d x2
f(x),

which is
∇. [f∇g − g∇f ] = f∇2g − g∇2f (30)

Applying the divergence theorem yields Green’s second identity:∫
τ

(
f∇2g − g∇2f

)
d τ =

∮
σ

[f∇g − g∇f ] .n̂ d σ (31)
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