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Convergence of Mc-Laurin Series

Power-series

A real power-series about a point x0 is an infinite series in postive powers of (x − x0), for
x, x0 ∈ R, in the form

∞∑
n=0

an (x− x0)
n , an ∈ R, for all n.

Each power series has an interval of convergence, centered at the point x0. If the half-width
of the interval is r, with 0 ≤ r < ∞, the power series converges absolutely for any point
inside the interval, i.e. for x0 − r < x < x0 + r (or |x − x0| < r) & diverges absolutely for
|x− x0| > r. The convergence behaviour at the boundaries x0± r is not certain & has to be
individually checked. r is called the radius of convergence of the given power-series.

A given set of coefficients define a particular power-series, whose sum is a function of x,
for |x− x0| < r. Hence, for

f(x) =
∞∑
n=0

an (x− x0)
n , |x− x0| < r

we say that the series represents f(x) in the interval of convergence & is the power-series
expansion of f(x) about x = x0.

There are two types of problems involving power-series:

1. given a series, i.e., given a set of coefficients an, to find the properties of f(x) &

2. given a function f(x), to find its power series representation, i.e., to find the set of
coefficients an.

For problem 1, some properties of f(x) inside the interval of convergence are its continuity
& infinite times differentiability. This follows readily from the same properties of each term
(x − x0)

n. All derivatives of f(x) are themselves convergent power series in the interval of
convergence. For example,

f (1)(x) =
∞∑
n=0

n an (x− x0)
n−1 =

∞∑
n=1

n an (x− x0)
n−1 =

∞∑
n′=0

(n′ + 1) an′+1 (x− x0)
n′
,

(with n′ = n− 1); =
∞∑
n=0

(n + 1) an+1 (x− x0)
n , with n′ = n



Mc Laurin Series

The first term vanishes in the second step, for n = 0. Also note that the summation index
in the first & last step are not equal, even though they have the same symbol.

Similarly, for the k-th derivative,

f (k)(x) =
∞∑
n=0

n(n− 1)(n− 2)...(n− k − 1) an (x− x0)
n−k

=
∞∑
n=k

n(n− 1)(n− 2)...(n− k + 1) an (x− x0)
n−k

=
∞∑

n′=0

(n′ + k)(n′ + k − 1)(n′ + k − 2)...(n′ + 1) an′+k (x− x0)
n′

(withn′ = n− k : n = n′ + k, n− 1 = n′ + k − 1, n− 2 = n′ + k − 2 ...)

=
∞∑
n=0

(n + k)(n + k − 1)(n + k − 2)...(n + 1) an+k (x− x0)
n

The derivatives at the point of expansion x0 are of special importance & are obtained by
simply substituting x = x0 in the above formula & noting that only the n = 0 term survives.

f (k)(x0) = k(k − 1)(k − 2) .... 3 .2 .1 ak = k! ak (1)

Taylor Polynomials of a function

We now consider problem 2. Suppose f(x) is infinitely differentiable in an open interval
centered at x0. Then, for any x, we can construct a polynomial of order n in powers of
(x− x0) whose k-th coefficient is given by

ak =
f (k)(x0)

k!
, k ≤ n (2)

= 0, k > n

The polynomial Pn(x) of order n constructed in this way is called the Taylor polynomial
approximation of degree n for f(x) about x0.

Pn(x) =
n∑

k=0

ak (x− x0)
k , (ak given by Eq.(2).) (3)

For example, the Taylor polynomials upto degree 3 for ex about x = 1 are:

P0(x) = e

P1(x) = e [1 + (x− 1)]

P2(x) = e
[
1 + (x− 1) + (x− 1)2/2

]
P3(x) = e

[
1 + (x− 1) + (x− 1)2/2 + (x− 1)3/6

]
From the above example, & also from Eqn.(3) & (2), Pn(x0) = a0 = f(x0). Also, from Eq(1)
& Eq(2),

P (k)
n (x0) = k! ak = k!

(
f (k)(x0)

k!

)
= f (k)(x0), for k ≤ n

= 0 6= f (k)(x0), for k > n (4)
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Figure 1: ex & its first four Talyor polynomial approximatons are plotted in an interval
about x0 = 1. The order of equality increases with the order of the polynomial & deviation
from ex decreases as a result near x0 = 1.

In other words, not only Pn(x0) = f(x0), but also all derivatives upto order n are equal at
the expansion point x0. Thus, Pn(x) & f(x) are equal at x0 upto order n.

[For any two functions f(x) & g(x), such that f(x0) = g(x0), their equality at x0 is of
order n if (or their inequality is of order n + 1)

limx−>x0 =
f(x)− g(x)

(x− x0)k
= 0, k ≤ n

6= 0, k = n + 1.]

A higher order of equality at x0 implies a lesser difference in the neighbourhood of x0, as is
evident from Fig(1). Hence, for n > m, Pn(x) is a better approximation to f(x) than Pm(x)
in the neighbourhood of x0.

S(x) = f(x0) +
f (1)(x0)

1!
(x− x0) +

f (2)(x0)

2!
(x− x0)

2 +
f (3)(x0)

3!
(x− x0)

3 + ...

=
∞∑
n=0

f (n)(x0)

n!
(x− x0)

n

If x ∈ [a, b], then S(x) converges to f(x) at the given value of x. Hence, we can write

f(x) =
∞∑
n=0

f (n)(x0)

n!
(x− x0)

n , forx ∈ [a, b] (5)
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The Mc-Laurin expansion is a special case of Taylor expansion about x0 = 0. Thus, the
Mc.Laurin expansion of f(x) is the series

S ′(x) = f(0) + f (1)(0)
x

1!
+ f (2)(0)

x2

2!
+ f (3)(0)

x3

3!
+ ...

Again, it is assumed that f(x) is infinitely differentiable in an interval [−r, r], r > 0. r is
the radius of convergence of S ′(x).

For |x| < r, the series converges to f(x).

f(x) =
∞∑
n=0

f (n)(0)

n!
xn, for |x| < r (6)
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