Khatra Adibasi Mahavidyalaya: Lecture Notes

Dr. Siddhartha Sinha

Convergence of Mc-Laurin Series

Power-series

A real power-series about a point x_0 is an infinite series in postive powers of $(x - x_0)$, for $x, x_0 \in \mathbb{R}$, in the form

$$
\sum_{n=0}^{\infty} a_n (x - x_0)^n, a_n \in \mathbb{R}, \text{ for all } n.
$$

Each power series has an *interval of convergence*, centered at the point x_0 . If the half-width of the interval is r, with $0 \leq r < \infty$, the power series converges *absolutely* for any point inside the interval, i.e. for $x_0 - r < x < x_0 + r$ (or $|x - x_0| < r$) & diverges absolutely for $|x-x_0| > r$. The convergence behaviour at the boundaries $x_0 \pm r$ is not certain & has to be individually checked. r is called the *radius of convergence* of the given power-series.

A given set of coefficients define a particular power-series, whose sum is a function of x , for $|x-x_0| < r$. Hence, for

$$
f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n, |x - x_0| < r
$$

we say that the series represents $f(x)$ in the interval of convergence & is the power-series expansion of $f(x)$ about $x = x_0$.

There are two types of problems involving power-series:

- 1. given a series, *i.e.*, given a set of coefficients a_n , to find the properties of $f(x)$ &
- 2. given a function $f(x)$, to find its power series representation, *i.e.*, to find the set of coefficients a_n .

For problem 1, some properties of $f(x)$ inside the interval of convergence are its continuity & infinite times differentiability. This follows readily from the same properties of each term $(x-x_0)^n$. All derivatives of $f(x)$ are themselves convergent power series in the interval of convergence. For example,

$$
f^{(1)}(x) = \sum_{n=0}^{\infty} n a_n (x - x_0)^{n-1} = \sum_{n=1}^{\infty} n a_n (x - x_0)^{n-1} = \sum_{n'=0}^{\infty} (n' + 1) a_{n'+1} (x - x_0)^{n'},
$$

(with n' = n - 1);
$$
= \sum_{n=0}^{\infty} (n + 1) a_{n+1} (x - x_0)^n
$$
, with n' = n

The first term vanishes in the second step, for $n = 0$. Also note that the summation index in the first $\&$ last step are not equal, even though they have the same symbol.

Similarly, for the k -th derivative,

$$
f^{(k)}(x) = \sum_{n=0}^{\infty} n(n-1)(n-2)...(n-k-1) a_n (x - x_0)^{n-k}
$$

=
$$
\sum_{n=k}^{\infty} n(n-1)(n-2)...(n-k+1) a_n (x - x_0)^{n-k}
$$

=
$$
\sum_{n'=0}^{\infty} (n' + k)(n' + k - 1)(n' + k - 2)...(n' + 1) a_{n'+k} (x - x_0)^{n'}
$$

(with $n' = n - k : n = n' + k, n - 1 = n' + k - 1, n - 2 = n' + k - 2...$)
=
$$
\sum_{n=0}^{\infty} (n + k)(n + k - 1)(n + k - 2)...(n + 1) a_{n+k} (x - x_0)^n
$$

The derivatives at the point of expansion x_0 are of special importance & are obtained by simply substituting $x = x_0$ in the above formula & noting that only the $n = 0$ term survives.

$$
f^{(k)}(x_0) = k(k-1)(k-2)\dots 3 \cdot 2 \cdot 1 \cdot a_k = k! \cdot a_k \tag{1}
$$

Taylor Polynomials of a function

We now consider problem 2. Suppose $f(x)$ is infinitely differentiable in an open interval centered at x_0 . Then, for any x, we can construct a *polynomial* of order n in powers of $(x - x_0)$ whose k-th coefficient is given by

$$
a_k = \frac{f^{(k)}(x_0)}{k!}, \ k \le n
$$

= 0, $k > n$ (2)

The polynomial $P_n(x)$ of order n constructed in this way is called the Taylor polynomial approximation of degree n for $f(x)$ about x_0 .

$$
P_n(x) = \sum_{k=0}^{n} a_k (x - x_0)^k, (a_k \text{ given by Eq.}(2).)
$$
 (3)

For example, the Taylor polynomials upto degree 3 for e^x about $x = 1$ are:

$$
P_0(x) = e
$$

\n
$$
P_1(x) = e [1 + (x - 1)]
$$

\n
$$
P_2(x) = e [1 + (x - 1) + (x - 1)^2 / 2]
$$

\n
$$
P_3(x) = e [1 + (x - 1) + (x - 1)^2 / 2 + (x - 1)^3 / 6]
$$

From the above example, & also from Eqn.(3) & (2), $P_n(x_0) = a_0 = f(x_0)$. Also, from Eq(1) $&$ Eq(2),

$$
P_n^{(k)}(x_0) = k! a_k = k! \left(\frac{f^{(k)}(x_0)}{k!} \right) = f^{(k)}(x_0), \text{ for } k \le n
$$

= 0 \ne f^{(k)}(x_0), \text{ for } k > n (4)

$$
\overline{2}
$$

Dr. Siddhartha Sinha

Figure 1: e^x & its first four Talyor polynomial approximatons are plotted in an interval about $x_0 = 1$. The order of equality increases with the order of the polynomial & deviation from e^x decreases as a result near $x_0 = 1$.

In other words, not only $P_n(x_0) = f(x_0)$, but also all derivatives upto order n are equal at the expansion point x_0 . Thus, $P_n(x) \& f(x)$ are equal at x_0 upto order n.

[For any two functions $f(x) \& g(x)$, such that $f(x_0) = g(x_0)$, their equality at x_0 is of order n if (or their *inequality* is of order $n + 1$)

$$
lim_{x \to x_0} = \frac{f(x) - g(x)}{(x - x_0)^k} = 0, \ k \le n
$$

$$
\neq 0, \ k = n + 1.
$$

A higher order of equality at x_0 implies a lesser difference in the neighbourhood of x_0 , as is evident from Fig(1). Hence, for $n > m$, $P_n(x)$ is a better approximation to $f(x)$ than $P_m(x)$ in the neighbourhood of x_0 .

$$
S(x) = f(x_0) + \frac{f^{(1)}(x_0)}{1!}(x - x_0) + \frac{f^{(2)}(x_0)}{2!}(x - x_0)^2 + \frac{f^{(3)}(x_0)}{3!}(x - x_0)^3 + \dots
$$

$$
= \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n
$$

If $x \in [a, b]$, then $S(x)$ converges to $f(x)$ at the given value of x. Hence, we can write

$$
f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n, \text{ for } x \in [a, b]
$$
 (5)

3 Dr. Siddhartha Sinha

The Mc-Laurin expansion is a special case of Taylor expansion about $x_0 = 0$. Thus, the Mc. Laurin expansion of $f(x)$ is the series

$$
S'(x) = f(0) + f^{(1)}(0)\frac{x}{1!} + f^{(2)}(0)\frac{x^2}{2!} + f^{(3)}(0)\frac{x^3}{3!} + \dots
$$

Again, it is assumed that $f(x)$ is infinitely differentiable in an interval $[-r, r]$, $r > 0$. r is the *radius of convergence* of $S'(x)$.

For $|x| < r$, the series converges to $f(x)$.

$$
f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n, \text{ for } |x| < r \tag{6}
$$